The Bachelor of Engineering (Honours) and Master of Project Management in Engineering aims to produce an engineer skilled in high-level engineering designs and managing engineering projects, including project planning, stakeholder management, risk management, strategy, resource management, project control procurement management, and execution. This course strongly focuses on contextual learning and promoting sustainable development so that you will apply theory to authentic scenarios throughout your course.
In your first year, you will develop skills in problem-solving, teamwork and engineering professional practice together with learning foundational technical content. In Term 2 of Year 1, you will undertake an authentic industry-based project with work-integrated learning. You will gain in-depth discipline-specific technical knowledge and skills in the second year. In the third and fourth years of your course, you will develop a deeper understanding of the foundation knowledge you gained in the first and second years. In the fourth and final year, you will choose project management units while completing several engineering projects and apply that knowledge to real-life projects.
You will confirm your ability to work as a professional engineer by completing a major individual engineering project, sometimes with an industry mentor, and a project management research project during the fifth year of the course.
The Master of Project Management in Engineering is not a standalone course and can only be studied with the Bachelor of Engineering (Honours) course.
As a professional engineer, you will create change by developing new technologies and solutions to improve working and living standards for the community while protecting the environment. Professional engineers engage with people from all sections of society. They must listen to societal needs and apply their knowledge of science, technology, mathematics, and engineering standards to design, prototype, implement, operate and maintain solutions to complex problems.
Civil engineers are typically involved in planning, designing and maintaining physical infrastructure systems, including the construction of buildings and bridges, transport and water resource systems, sewage and industrial waste systems, harbours and railways.
Electrical engineers are typically involved in designing, developing and maintaining electrical power and energy systems, including electricity generation and distribution, telecommunications, instrumentation and control, microprocessors and electronics.
Mechanical engineers are typically involved in planning, designing, installing, maintaining and operating machines, thermodynamic and combustion systems, fluid systems, materials handling systems, manufacturing equipment and process plant.
Resource Systems engineers are typically involved with designing, planning and operating mines and mineral and coal processing plants. They specialise in applying contemporary technologies to increase productivity, sustainability and safety of resource industry (mining and mineral processing) operations. In addition, they will work closely with Civil, Electrical and Mechanical engineers to maintain complex facilities.
Duration | 5 years full-time or 10 years part-time |
---|---|
Credit Points that Must be Earned | 240 |
Number of Units Required |
CQUniversity uses the concept of credits to express the amount of study required for a particular course and individual units. The number of units varies between courses. Undergraduate: Units in undergraduate courses normally consist of 6 points of credit or multiples thereof (e.g. 12, 18, 24). Postgraduate: Units in postgraduate courses normally consist of 6 points of credit or multiples thereof (e.g. 12, 18, 24). |
Expected Hours of Study |
Undergraduate: One point of credit is equivalent to an expectation of approximately two hours of student work per week in a term. Postgraduate: One point of credit is equivalent to an expectation of approximately two hours of student work per week in a term. |
Course Type | Postgraduate, Undergraduate Double Degree |
Qualification (post nominal) | BEng(Hons) MPMEng |
AQF Level | Level 9: Masters Degree (Coursework) |
Course Fees |
Indicative Year - 2025
Indicative Year - 2024
Indicative Year - 2022
|
Domestic Students Tertiary Admission Centre Codes (TAC) Codes |
|
---|---|
International Students CRICOS Codes |
Not Applicable |
Rank Threshold | SR 69 | ATAR 69 |
English (Units 3 & 4, C) or equivalent; General Mathematics (Units 3 & 4, C) or equivalent.
English Language Proficiency Requirements:
If you were not born in Australia, Canada, New Zealand, United Kingdom, Ireland, South Africa or the United States of America you are required to meet the English Language Proficiency requirements set by the University. Applicants are required to provide evidence of completion within the last 10 years of:
If you do not satisfy any of the above you will need to undertake an English language proficiency test and achieve the following scores:
English test results remain valid for no more than two years between final examination date and the date of commencement of study, and must appear on a single result certificate.
If you are an international student please visit International Students English requirements for further information.
Each student will be assessed individually.
Recommended study: Mathematical Methods, Physics, and Design
N/A
N/A
Interim Awards | CC31 - Bachelor of Engineering (Honours) |
---|---|
Exit Awards | CM23 - Undergraduate Certificate in Introductory Engineering CL42 - Diploma of Engineering Studies CC31 - Bachelor of Engineering (Honours) |
Accreditation |
|
Compulsory Residential School | All units in this course are offered in online mode. Some units will have compulsory Residential Schools for online students. These Residential Schools give students an opportunity to develop and demonstrate practical skills. |
---|---|
Click here to view all Residential Schools |
ENEP14004 - Students are required to complete 480 hours (including a minimum of 240 hours of industry experience) of Engineering Professional Practice prior to graduation. Once the students have completed the professional practice requirements, they must enrol in this unit and provide evidence of how they have attained the professional engineering practice exposure required by Engineers Australia. |
Year | Number of Students |
---|---|
2024 | 18 |
2023 | 10 |
2022 | 4 |
Course Learning Outcomes | |||||||||
---|---|---|---|---|---|---|---|---|---|
Australian Qualifications Framework Descriptors | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
1. KNOWLEDGE Have a body of knowledge that includes the understanding of recent developments in a discipline and/or area of professional practice | |||||||||
2. KNOWLEDGE Have an understanding of research principles and methods applicable to a field of work and/or learning | |||||||||
3. SKILLS Have cognitive skills to demonstrate mastery of theoretical knowledge and to reflect critically on theory and professional practice or scholarship | |||||||||
4. SKILLS Have cognitive, technical and creative skills to investigate, analyse and synthesise complex information, problems, concepts and theories and to apply established theories to different bodies of knowledge or practice | |||||||||
5. SKILLS Have cognitive, technical and creative skills to generate and evaluate complex ideas and concepts at an abstract level | |||||||||
6. SKILLS Have communication and technical research skills to justify and interpret theoretical propositions, methodologies, conclusions and professional decisions to specialist and non-specialist audiences | |||||||||
7. SKILLS Have technical and communication skills to design, evaluate, implement, analyse and theorise about developments that contribute to professional practice or scholarship | |||||||||
8. APPLICATION OF KNOWLEDGE & SKILLS Be able to use creativity and initiative to new situations in professional practice and/or for further learning | |||||||||
9. APPLICATION OF KNOWLEDGE & SKILLS Be able to use high level personal autonomy and accountability | |||||||||
10 APPLICATION OF KNOWLEDGE & SKILLS Be able to plan and execute a substantial research-based project, capstone experience and/or piece of scholarship. | |||||||||
APPLICATION OF KNOWLEDGE & SKILLS Communicate, interact and collaborate with others effectively in culturally or linguistically diverse contexts in a culturally respectful manner |
Course Learning Outcomes | |||||||||
---|---|---|---|---|---|---|---|---|---|
Australian Qualifications Framework Descriptors | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
1. KNOWLEDGE Have a body of knowledge that includes the understanding of recent developments in a discipline and/or area of professional practice | |||||||||
2. KNOWLEDGE Have an understanding of research principles and methods applicable to a field of work and/or learning | |||||||||
3. SKILLS Have cognitive skills to demonstrate mastery of theoretical knowledge and to reflect critically on theory and professional practice or scholarship | |||||||||
4. SKILLS Have cognitive, technical and creative skills to investigate, analyse and synthesise complex information, problems, concepts and theories and to apply established theories to different bodies of knowledge or practice | |||||||||
5. SKILLS Have cognitive, technical and creative skills to generate and evaluate complex ideas and concepts at an abstract level | |||||||||
6. SKILLS Have communication and technical research skills to justify and interpret theoretical propositions, methodologies, conclusions and professional decisions to specialist and non-specialist audiences | |||||||||
7. SKILLS Have technical and communication skills to design, evaluate, implement, analyse and theorise about developments that contribute to professional practice or scholarship | |||||||||
8. APPLICATION OF KNOWLEDGE & SKILLS Be able to use creativity and initiative to new situations in professional practice and/or for further learning | |||||||||
9. APPLICATION OF KNOWLEDGE & SKILLS Be able to use high level personal autonomy and accountability | |||||||||
10 APPLICATION OF KNOWLEDGE & SKILLS Be able to plan and execute a substantial research-based project, capstone experience and/or piece of scholarship. | |||||||||
APPLICATION OF KNOWLEDGE & SKILLS Communicate, interact and collaborate with others effectively in culturally or linguistically diverse contexts in a culturally respectful manner |
Course Learning Outcomes | |||||||||
---|---|---|---|---|---|---|---|---|---|
Australian Qualifications Framework Descriptors | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
1. KNOWLEDGE Have a body of knowledge that includes the understanding of recent developments in a discipline and/or area of professional practice | |||||||||
2. KNOWLEDGE Have an understanding of research principles and methods applicable to a field of work and/or learning | |||||||||
3. SKILLS Have cognitive skills to demonstrate mastery of theoretical knowledge and to reflect critically on theory and professional practice or scholarship | |||||||||
4. SKILLS Have cognitive, technical and creative skills to investigate, analyse and synthesise complex information, problems, concepts and theories and to apply established theories to different bodies of knowledge or practice | |||||||||
5. SKILLS Have cognitive, technical and creative skills to generate and evaluate complex ideas and concepts at an abstract level | |||||||||
6. SKILLS Have communication and technical research skills to justify and interpret theoretical propositions, methodologies, conclusions and professional decisions to specialist and non-specialist audiences | |||||||||
7. SKILLS Have technical and communication skills to design, evaluate, implement, analyse and theorise about developments that contribute to professional practice or scholarship | |||||||||
8. APPLICATION OF KNOWLEDGE & SKILLS Be able to use creativity and initiative to new situations in professional practice and/or for further learning | |||||||||
9. APPLICATION OF KNOWLEDGE & SKILLS Be able to use high level personal autonomy and accountability | |||||||||
10 APPLICATION OF KNOWLEDGE & SKILLS Be able to plan and execute a substantial research-based project, capstone experience and/or piece of scholarship. | |||||||||
APPLICATION OF KNOWLEDGE & SKILLS Communicate, interact and collaborate with others effectively in culturally or linguistically diverse contexts in a culturally respectful manner |
Course Learning Outcomes | |||||||||
---|---|---|---|---|---|---|---|---|---|
Australian Qualifications Framework Descriptors | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
1. KNOWLEDGE Have a body of knowledge that includes the understanding of recent developments in a discipline and/or area of professional practice | |||||||||
2. KNOWLEDGE Have an understanding of research principles and methods applicable to a field of work and/or learning | |||||||||
3. SKILLS Have cognitive skills to demonstrate mastery of theoretical knowledge and to reflect critically on theory and professional practice or scholarship | |||||||||
4. SKILLS Have cognitive, technical and creative skills to investigate, analyse and synthesise complex information, problems, concepts and theories and to apply established theories to different bodies of knowledge or practice | |||||||||
5. SKILLS Have cognitive, technical and creative skills to generate and evaluate complex ideas and concepts at an abstract level | |||||||||
6. SKILLS Have communication and technical research skills to justify and interpret theoretical propositions, methodologies, conclusions and professional decisions to specialist and non-specialist audiences | |||||||||
7. SKILLS Have technical and communication skills to design, evaluate, implement, analyse and theorise about developments that contribute to professional practice or scholarship | |||||||||
8. APPLICATION OF KNOWLEDGE & SKILLS Be able to use creativity and initiative to new situations in professional practice and/or for further learning | |||||||||
9. APPLICATION OF KNOWLEDGE & SKILLS Be able to use high level personal autonomy and accountability | |||||||||
10 APPLICATION OF KNOWLEDGE & SKILLS Be able to plan and execute a substantial research-based project, capstone experience and/or piece of scholarship. | |||||||||
APPLICATION OF KNOWLEDGE & SKILLS Communicate, interact and collaborate with others effectively in culturally or linguistically diverse contexts in a culturally respectful manner |
Course Learning Outcomes | |||||||||
---|---|---|---|---|---|---|---|---|---|
Australian Qualifications Framework Descriptors | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
1. KNOWLEDGE Have a body of knowledge that includes the understanding of recent developments in a discipline and/or area of professional practice | |||||||||
2. KNOWLEDGE Have an understanding of research principles and methods applicable to a field of work and/or learning | |||||||||
3. SKILLS Have cognitive skills to demonstrate mastery of theoretical knowledge and to reflect critically on theory and professional practice or scholarship | |||||||||
4. SKILLS Have cognitive, technical and creative skills to investigate, analyse and synthesise complex information, problems, concepts and theories and to apply established theories to different bodies of knowledge or practice | |||||||||
5. SKILLS Have cognitive, technical and creative skills to generate and evaluate complex ideas and concepts at an abstract level | |||||||||
6. SKILLS Have communication and technical research skills to justify and interpret theoretical propositions, methodologies, conclusions and professional decisions to specialist and non-specialist audiences | |||||||||
7. SKILLS Have technical and communication skills to design, evaluate, implement, analyse and theorise about developments that contribute to professional practice or scholarship | |||||||||
8. APPLICATION OF KNOWLEDGE & SKILLS Be able to use creativity and initiative to new situations in professional practice and/or for further learning | |||||||||
9. APPLICATION OF KNOWLEDGE & SKILLS Be able to use high level personal autonomy and accountability | |||||||||
10 APPLICATION OF KNOWLEDGE & SKILLS Be able to plan and execute a substantial research-based project, capstone experience and/or piece of scholarship. | |||||||||
APPLICATION OF KNOWLEDGE & SKILLS Communicate, interact and collaborate with others effectively in culturally or linguistically diverse contexts in a culturally respectful manner |
Course Learning Outcomes | |||||||||
---|---|---|---|---|---|---|---|---|---|
Australian Qualifications Framework Descriptors | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
1. KNOWLEDGE Have a body of knowledge that includes the understanding of recent developments in a discipline and/or area of professional practice | |||||||||
2. KNOWLEDGE Have an understanding of research principles and methods applicable to a field of work and/or learning | |||||||||
3. SKILLS Have cognitive skills to demonstrate mastery of theoretical knowledge and to reflect critically on theory and professional practice or scholarship | |||||||||
4. SKILLS Have cognitive, technical and creative skills to investigate, analyse and synthesise complex information, problems, concepts and theories and to apply established theories to different bodies of knowledge or practice | |||||||||
5. SKILLS Have cognitive, technical and creative skills to generate and evaluate complex ideas and concepts at an abstract level | |||||||||
6. SKILLS Have communication and technical research skills to justify and interpret theoretical propositions, methodologies, conclusions and professional decisions to specialist and non-specialist audiences | |||||||||
7. SKILLS Have technical and communication skills to design, evaluate, implement, analyse and theorise about developments that contribute to professional practice or scholarship | |||||||||
8. APPLICATION OF KNOWLEDGE & SKILLS Be able to use creativity and initiative to new situations in professional practice and/or for further learning | |||||||||
9. APPLICATION OF KNOWLEDGE & SKILLS Be able to use high level personal autonomy and accountability | |||||||||
10 APPLICATION OF KNOWLEDGE & SKILLS Be able to plan and execute a substantial research-based project, capstone experience and/or piece of scholarship. | |||||||||
APPLICATION OF KNOWLEDGE & SKILLS Communicate, interact and collaborate with others effectively in culturally or linguistically diverse contexts in a culturally respectful manner |
Course Learning Outcomes | |||||||||
---|---|---|---|---|---|---|---|---|---|
Australian Qualifications Framework Descriptors | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
1. KNOWLEDGE Have a body of knowledge that includes the understanding of recent developments in a discipline and/or area of professional practice | |||||||||
2. KNOWLEDGE Have an understanding of research principles and methods applicable to a field of work and/or learning | |||||||||
3. SKILLS Have cognitive skills to demonstrate mastery of theoretical knowledge and to reflect critically on theory and professional practice or scholarship | |||||||||
4. SKILLS Have cognitive, technical and creative skills to investigate, analyse and synthesise complex information, problems, concepts and theories and to apply established theories to different bodies of knowledge or practice | |||||||||
5. SKILLS Have cognitive, technical and creative skills to generate and evaluate complex ideas and concepts at an abstract level | |||||||||
6. SKILLS Have communication and technical research skills to justify and interpret theoretical propositions, methodologies, conclusions and professional decisions to specialist and non-specialist audiences | |||||||||
7. SKILLS Have technical and communication skills to design, evaluate, implement, analyse and theorise about developments that contribute to professional practice or scholarship | |||||||||
8. APPLICATION OF KNOWLEDGE & SKILLS Be able to use creativity and initiative to new situations in professional practice and/or for further learning | |||||||||
9. APPLICATION OF KNOWLEDGE & SKILLS Be able to use high level personal autonomy and accountability | |||||||||
10 APPLICATION OF KNOWLEDGE & SKILLS Be able to plan and execute a substantial research-based project, capstone experience and/or piece of scholarship. | |||||||||
APPLICATION OF KNOWLEDGE & SKILLS Communicate, interact and collaborate with others effectively in culturally or linguistically diverse contexts in a culturally respectful manner |
Number of units: 8 | Total credit points: 48 |
---|
Note that while the Bachelor of Engineering (Honours) and the Master of Project Management in Engineering is accredited by Engineers Australia at the professional level, the Master of Project Management in Engineering by itself is not an accredited entry to engineering professional practice.
In order to complete this course, you must:
The More Details tab has a link to the Course Planners for this course.
Note that full-time students generally enrol in 24cp per term and part-time students (working more than 20 hours a week) generally enrol in a half-load i.e. 12cp per term.
Available units | ||
---|---|---|
Students must complete the following compulsory units: | ||
ENEG11005 | Introduction to Contemporary Engineering | |
ENEG11006 | Engineering Statics | |
ENEG11007 | Engineering Industry Project Investigation | |
ENEG11008 | Materials for Engineers | |
MATH11247 | Foundation Mathematics | |
MATH11218 | Applied Mathematics | |
MATH11219 | Applied Calculus |
Professional Engineering Practice
To be eligible for graduation, you must complete 480 hours of Professional Engineering Practice, including a minimum of 240 hours of industry experience. Mandatory work experience is set by the course accreditation body Engineers Australia. In one of your final terms of study, you must enrol into the following zero-credit unit, at no cost to you, and record your Professional Engineering Practice in an ePortfolio. The More Details tab contains a link to the Undergraduate Engineering Course Moodle Meta-site which contains further instructions on completing your Professional Engineering Practice.
Available units | ||
---|---|---|
Students must complete the following compulsory units: | ||
ENEP14004 | Engineering Practice Experience |
Number of units: 27 | Total credit points: 192 |
---|
Intermediate Units
Available units | ||
---|---|---|
Students must complete the following compulsory units: | ||
ENEG11009 | Fundamentals of Sustainable Energy | |
ENEG12007 | Creative Engineering | |
ENEC12009 | Engineering Surveying and Spatial Sciences | |
ENEC12010 | Hydraulics and Hydrology | |
ENEC12008 | Geotechnical Engineering | |
ENEC12011 | Transport Systems | |
ENEC12012 | Stress Analysis | |
MATH12225 | Applied Computational Modelling | |
ENEG13002 | Engineering Futures |
Advanced Units
Please note that ENEC14014, ENEC14016 and ENEC14017 are double credit-point (12cp) units intended to provide an authentic project experience.
Available units | ||
---|---|---|
Students must complete the following compulsory units: | ||
ENEC13014 | Water Supply and Wastewater Technology | |
ENEC13015 | Steel and Timber Design | |
ENEC13016 | Concrete Technology and Design | |
ENEC13017 | Advanced Structural Analysis | |
ENEC14014 | Structural and Geotechnical Design | |
ENEC14016 | Traffic and Transportation Engineering | |
ENEC14017 | Water Resources Engineering |
Electives
In addition to the units listed above, there is an elective slot in the civil major.
There is a pre-approved set of electives listed in the Course Planner (the link is in the More Details tab). Should you wish to complete an elective not on the pre-approved list, contact the Head of Course to discuss.
Capstone Project
At the end of the bachelor of engineering component of your course, you will complete a final year engineering project over 2 terms. The final year engineering project confirms your ability to work as a professional engineer.
Please see More Details section for information on enrolling into the final year project units ENEG14003 and ENEG14005.
Available units | ||
---|---|---|
Students must complete the following compulsory units: | ||
ENEG14003 | Engineering Honours Project Planning | |
ENEG14005 | Engineering Honours Project Implementation |
Engineering Project Management
In addition to the engineering project units ENEG14003 and ENEG14005, you will complete the following project management units which together make up the Master of Engineering Project Management qualification.
Available units | ||
---|---|---|
Students must complete the following compulsory units: | ||
PPMP20007 | Project Management Concepts | |
PPMP20008 | Initiating and Planning Projects | |
PPMP20010 | Executing and Closing Projects | |
PPMP20009 | Leading Lean Projects | |
PPMP20011 | Contract and Procurement Management | |
PPMP20012 | Portfolio and Program Management | |
PPMP20015 | Research Proposal | |
PPMP20016 | Research Project 2 |
Number of units: 27 | Total credit points: 192 |
---|
Intermediate Units
Available units | ||
---|---|---|
Students must complete the following compulsory units: | ||
SOCL11059 | Introducing Social Change | |
ENEC12008 | Geotechnical Engineering | |
ENEC12009 | Engineering Surveying and Spatial Sciences | |
ENEC12010 | Hydraulics and Hydrology | |
ENEC12011 | Transport Systems | |
ENEC12012 | Stress Analysis | |
ENEG12007 | Creative Engineering | |
ENEG12008 | Appropriate Technology for Humanitarian Projects | |
ENEG13002 | Engineering Futures |
Advanced Units
Please note that ENEC14014, ENEC14016 and ENEC14017 are double credit-point (12cp) units intended to provide an authentic project experience.
Available units | ||
---|---|---|
Students must complete the following compulsory units: | ||
ENEC13014 | Water Supply and Wastewater Technology | |
ENEC13015 | Steel and Timber Design | |
ENEC13016 | Concrete Technology and Design | |
ENEG13001 | Humanitarian Engineering Project | |
ENEC14014 | Structural and Geotechnical Design | |
ENEC14016 | Traffic and Transportation Engineering | |
ENEC14017 | Water Resources Engineering | |
ENEC14018 | Disaster Resilient Infrastructure |
Capstone Project
At the end of the bachelor of engineering component of your course, you will complete a final year engineering project over 2 terms. The final year engineering project confirms your ability to work as a professional engineer.
Please see More Details section for information on enrolling into the final year project units ENEG14003 and ENEG14005.
Available units | ||
---|---|---|
Students must complete the following compulsory units: | ||
ENEG14003 | Engineering Honours Project Planning | |
ENEG14005 | Engineering Honours Project Implementation |
Engineering Project Management
In addition to the engineering project units ENEG14003 and ENEG14005, you will complete the following project management units which together make up the Master of Engineering Project Management qualification.
Available units | ||
---|---|---|
Students must complete the following compulsory units: | ||
PPMP20007 | Project Management Concepts | |
PPMP20008 | Initiating and Planning Projects | |
PPMP20010 | Executing and Closing Projects | |
PPMP20009 | Leading Lean Projects | |
PPMP20011 | Contract and Procurement Management | |
PPMP20012 | Portfolio and Program Management | |
PPMP20015 | Research Proposal | |
PPMP20016 | Research Project 2 |
Number of units: 27 | Total credit points: 192 |
---|
Intermediate Units
Available units | ||
---|---|---|
Students must complete the following compulsory units: | ||
ENEG11009 | Fundamentals of Sustainable Energy | |
ENEG12007 | Creative Engineering | |
ENEE12014 | Electrical Circuit Analysis | |
ENEE12015 | Electrical Power Engineering | |
ENEE12016 | Signals and Systems | |
ENEX12002 | Introductory Electronics | |
MATH12225 | Applied Computational Modelling | |
ENEG13002 | Engineering Futures |
Advanced Units
Please note that ENEE14005, ENEE14006 and ENEE14007 are double credit-point (12cp) units intended to provide an authentic project experience.
Available units | ||
---|---|---|
Students must complete the following compulsory units: | ||
ENEX13002 | Power Electronics | |
ENEE13016 | Power System Protection | |
ENEE13019 | Control Systems Analysis and Design | |
ENEE13021 | Power System Analysis and Design | |
ENEE13022 | Communication Technology | |
ENEE14005 | Capstone Power and Control Design | |
ENEE14006 | Embedded Microcontrollers | |
ENEE14007 | Electrical Machines and Drives Applications |
Electives
In addition to the units listed above, there is an elective slot in the electrical major.
There is a pre-approved set of electives listed in the Course Planner (the link is in the More Details tab). Should you wish to complete an elective not on the pre-approved list, contact the Head of Course to discuss.
Capstone Project
At the end of the bachelor of engineering component of your course, you will complete a final year engineering project over 2 terms. The final year engineering project confirms your ability to work as a professional engineer.
Please see More Details section for information on enrolling into the final year project units ENEG14003 and ENEG14005.
Available units | ||
---|---|---|
Students must complete the following compulsory units: | ||
ENEG14003 | Engineering Honours Project Planning | |
ENEG14005 | Engineering Honours Project Implementation |
Engineering Project Management
In addition to the engineering project units ENEG14003 and ENEG14005, you will complete the following project management units which together make up the Master of Engineering Project Management qualification.
Available units | ||
---|---|---|
Students must complete the following compulsory units: | ||
PPMP20007 | Project Management Concepts | |
PPMP20008 | Initiating and Planning Projects | |
PPMP20010 | Executing and Closing Projects | |
PPMP20009 | Leading Lean Projects | |
PPMP20011 | Contract and Procurement Management | |
PPMP20012 | Portfolio and Program Management | |
PPMP20015 | Research Proposal | |
PPMP20016 | Research Project 2 |
Number of units: 27 | Total credit points: 192 |
---|
Intermediate Units
Available units | ||
---|---|---|
Students must complete the following compulsory units: | ||
ENEG11009 | Fundamentals of Sustainable Energy | |
ENEM12010 | Engineering Dynamics | |
ENEE12014 | Electrical Circuit Analysis | |
ENEE12015 | Electrical Power Engineering | |
ENEE12016 | Signals and Systems | |
ENEX12002 | Introductory Electronics | |
MATH12225 | Applied Computational Modelling | |
ENEG13002 | Engineering Futures |
Advanced Units
ENEE14005, ENEE14006 and ENEE14007 are double credit-point (12cp) units intended to provide an authentic project experience.
Capstone Project
At the end of the bachelor of engineering component of your course, you will complete a final year engineering project over 2 terms. The final year engineering project confirms your ability to work as a professional engineer. Please see More Details section for information on enrolling into the final year project units ENEG14003 and ENEG14005.
Available units | ||
---|---|---|
Students must complete the following compulsory units: | ||
ENEG14003 | Engineering Honours Project Planning | |
ENEG14005 | Engineering Honours Project Implementation |
Engineering Project Management
In addition to the engineering project units ENEG14003 and ENEG14005, you will complete the following project management units which together make up the Master of Engineering Project Management qualification.
Available units | ||
---|---|---|
Students must complete the following compulsory units: | ||
PPMP20007 | Project Management Concepts | |
PPMP20008 | Initiating and Planning Projects | |
PPMP20010 | Executing and Closing Projects | |
PPMP20009 | Leading Lean Projects | |
PPMP20011 | Contract and Procurement Management | |
PPMP20012 | Portfolio and Program Management | |
PPMP20015 | Research Proposal | |
PPMP20016 | Research Project 2 |
Number of units: 28 | Total credit points: 192 |
---|
Intermediate units
Available units | ||
---|---|---|
Students must complete the following compulsory units: | ||
ENEG11009 | Fundamentals of Sustainable Energy | |
ENEG12007 | Creative Engineering | |
ENEM12006 | Fluid Mechanics | |
ENEM12008 | Solid Materials Handling | |
ENEM12009 | Structural Mechanics | |
ENEM12010 | Engineering Dynamics | |
MATH12225 | Applied Computational Modelling | |