ENEM12009 - Structural Mechanics

General Information

Unit Synopsis

In this unit, you will study the behaviour of solid bodies under different loadings by applying basic stress analysis principles and the introductory knowledge of engineering materials. You will gain in-depth understanding of the concepts of continuum stress, strain and deflection; analyse the response of mechanical components to axial, transverse, torsional, bending and buckling loads in the linear elastic regime. You will apply the theory of generalised Hooke’s law to design pressure vessels and similar thin walled structures. You will perform calculations concerned with the mechanical properties of materials and conceptually design different mechanical components and structures based on strength, stiffness and stability. You will acquire the skills and knowledge required to develop analytical techniques that are used to solve a wide range of linear stress/strain problems in engineering practice.

Details

Level Undergraduate
Unit Level 2
Credit Points 6
Student Contribution Band SCA Band 2
Fraction of Full-Time Student Load 0.125
Pre-requisites or Co-requisites
Pre-requisites: (MATH11160 Technology Mathematics or MATH11218 Applied Mathematics) AND (ENEG11006 Engineering Statics or ENEM12007 Statics & Dynamics) AND (ENEG11008 Materials for Engineers or ENEG12005 Material Science and Engineering).

Important note: Students enrolled in a subsequent unit who failed their pre-requisite unit, should drop the subsequent unit before the census date or within 10 working days of Fail grade notification. Students who do not drop the unit in this timeframe cannot later drop the unit without academic and financial liability. See details in the Assessment Policy and Procedure (Higher Education Coursework).

Class Timetable View Unit Timetable
Residential School No Residential School

Unit Availabilities from Term 3 - 2024

Term 1 - 2025 Profile
Bundaberg
Cairns
Gladstone
Mackay
Online
Rockhampton
Term 1 - 2026 Profile
Bundaberg
Cairns
Gladstone
Mackay
Online
Rockhampton

Attendance Requirements

All on-campus students are expected to attend scheduled classes - in some units, these classes are identified as a mandatory (pass/fail) component and attendance is compulsory. International students, on a student visa, must maintain a full time study load and meet both attendance and academic progress requirements in each study period (satisfactory attendance for International students is defined as maintaining at least an 80% attendance record).

Assessment Overview

Recommended Student Time Commitment

Each 6-credit Undergraduate unit at CQUniversity requires an overall time commitment of an average of 12.5 hours of study per week, making a total of 150 hours for the unit.

Assessment Tasks

Assessment Task Weighting
1. Written Assessment 20%
2. Written Assessment 20%
3. Written Assessment 20%
4. Written Assessment 0%
5. Examination 40%

This is a graded unit: your overall grade will be calculated from the marks or grades for each assessment task, based on the relative weightings shown in the table above. You must obtain an overall mark for the unit of at least 50%, or an overall grade of ‘pass’ in order to pass the unit. If any ‘pass/fail’ tasks are shown in the table above they must also be completed successfully (‘pass’ grade). You must also meet any minimum mark requirements specified for a particular assessment task, as detailed in the ‘assessment task’ section (note that in some instances, the minimum mark for a task may be greater than 50%).

Consult the University's Grades and Results Policy for more details of interim results and final grades

Past Exams

To view Past Exams,
please login
Previous Feedback

Term 1 - 2024 : The overall satisfaction for students in the last offering of this course was 77.78% (`Agree` and `Strongly Agree` responses), based on a 35.29% response rate.

Feedback, Recommendations and Responses

Every unit is reviewed for enhancement each year. At the most recent review, the following staff and student feedback items were identified and recommendations were made.

Source: Student feedback
Feedback
The use of 3D printing models enhances students learning.
Recommendation
The practice should be continuing.
Action Taken
Many 3D printing models were used to demonstrate the failure modes and related problem-solving scenarios.
Source: Student feedback
Feedback
Additional weekly questions with solutions on the Moodle site can help develop students' problem-solving skills.
Recommendation
Additional chapter problems and solutions should be uploaded to the unit Moodle site.
Action Taken
Additional problems, along with their solutions, were provided.
Source: Student feedback
Feedback
The reflection aspects associated with the assignment questions need to be reconsidered.
Recommendation
Consider revising assessment for relevance with achieving graduate capabilities.
Action Taken
The assessment of assignment questions was carried out carefully, and in 2024, the student evaluation of about 94% shows that the revision is going positively.
Source: Unit coordinator and CoEA reflection
Feedback
Teaching space and ITD connection and student engagement problems
Recommendation
The lecture and tutorial delivery should be improved by sorting out good teaching space before the term starts.
Action Taken
It was managed positively.
Source: SUTE
Feedback
Using 3D printing models, content delivery, and styles enhances students learning.
Recommendation
The practice should be continued.
Action Taken
In Progress
Source: SUTE
Feedback
Additional weekly questions with solutions on the Moodle site can help develop the student's problem-solving skills.
Recommendation
More solved problems should be employed on the Moodle site.
Action Taken
In Progress
Unit learning Outcomes

On successful completion of this unit, you will be able to:

  1. Analyse the elastic behaviour of engineering structures and components and determine stresses, principal stresses, strains and deflections and the effects of impact loads
  2. Analyse stress and strain using theoretical methods
  3. Explain theories of failure and apply failure analysis to structures and components
  4. Describe the nature of engineering assumptions and explain both the approaches used to deal with uncertainty and limitations of the validity of results
  5. Prepare professional, technical project documentation showing the evaluation of uncertainties and results obtained
  6. Communicate, work and learn independently and collaboratively and communicate in a professional manner.

The Learning Outcomes for this unit are linked with the Engineers Australia Stage 1 Competency Standards for Professional Engineers in the areas of 1. Knowledge and Skill Base, 2. Engineering Application Ability and 3. Professional and Personal Attributes at the following levels:

Introductory
1.5 Knowledge of engineering design practice and contextual factors impacting the engineering discipline. (LO: 1N 3N 4N )
1.6 Understanding of the scope, principles, norms, accountabilities and bounds of sustainable engineering practice in the specific discipline. (LO: 1N 3N 4N )
3.5 Orderly management of self, and professional conduct. (LO: 1N 3N 4N )

Intermediate
1.1 Comprehensive, theory-based understanding of the underpinning natural and physical sciences and the engineering fundamentals applicable to the engineering discipline. (LO: 1I 2N 3I 4I 5N 6N )
1.2 Conceptual understanding of the mathematics, numerical analysis, statistics, and computer and information sciences which underpin the engineering discipline. (LO: 1N 3I 4I 5N )
1.4 Discernment of knowledge development and research directions within the engineering discipline. (LO: 1N 3I 4I )
2.2 Fluent application of engineering techniques, tools and resources. (LO: 1I 2N 3I 4I 5I )
2.3 Application of systematic engineering synthesis and design processes. (LO: 1I 2N 3I 4I )

Advanced
1.3 In-depth understanding of specialist bodies of knowledge within the engineering discipline. (LO: 1I 2N 3A 4I 5N )
2.1 Application of established engineering methods to complex engineering problem-solving. (LO: 1I 2N 3A 4I )
Note: LO refers to the Learning Outcome number(s) which link to the competency and the levels: N – Introductory, I – Intermediate and A - Advanced.
Refer to the Engineering Undergraduate Course Moodle site for further information on the Engineers Australia's Stage 1 Competency Standard for Professional Engineers and course level mapping information
https://moodle.cqu.edu.au/course/view.php?id=1511

Alignment of Assessment Tasks to Learning Outcomes
Assessment Tasks Learning Outcomes
1 2 3 4 5 6
1 - Written Assessment
2 - Written Assessment
3 - Written Assessment
4 - Written Assessment
5 - Examination
Alignment of Graduate Attributes to Learning Outcomes
Introductory Level
Intermediate Level
Graduate Level
Graduate Attributes Learning Outcomes
1 2 3 4 5 6
1 - Communication
2 - Problem Solving
3 - Critical Thinking
4 - Information Literacy
6 - Information Technology Competence
Alignment of Assessment Tasks to Graduate Attributes
Introductory Level
Intermediate Level
Graduate Level
Assessment Tasks Graduate Attributes
1 2 3 4 5 6 7 8 9 10