ENEM14014 - Capstone Thermofluid Engineering

General Information

Unit Synopsis

This unit provides you with opportunities to develop and demonstrate your professional capabilities in the field of thermofluid engineering. You will analyse, explain and evaluate the performance of air-conditioning and refrigeration plant; and mass, heat and energy transfer processes in industrial plant and processes. You will describe types and characteristics of fluid machinery, apply the theory of energy transfer to its operation, and analyse complex fluid flows using computational methods. You will then apply discipline theories and methods to design, implementation, operation and maintenance of industrial mechanical systems. You are required to show you can work both individually and collaboratively, to solve problems, and document and communicate their work clearly in a professional manner. In this unit, you must complete compulsory practical activities. Refer to the Engineering Undergraduate Course Moodle site for proposed dates.

Details

Level Undergraduate
Unit Level 4
Credit Points 12
Student Contribution Band SCA Band 2
Fraction of Full-Time Student Load 0.25
Pre-requisites or Co-requisites
ENEM13014 Thermodynamics or ENEM12003 Thermodynamics] and ENEM12006 Fluid Mechanics [or ENEM12001 Fluid Mechanics

Important note: Students enrolled in a subsequent unit who failed their pre-requisite unit, should drop the subsequent unit before the census date or within 10 working days of Fail grade notification. Students who do not drop the unit in this timeframe cannot later drop the unit without academic and financial liability. See details in the Assessment Policy and Procedure (Higher Education Coursework).

Class Timetable View Unit Timetable
Residential School Compulsory Residential School
View Unit Residential School

Unit Availabilities from Term 1 - 2025

Term 1 - 2025 Profile
Bundaberg
Cairns
Gladstone
Mackay
Mixed Mode
Rockhampton
Term 1 - 2026 Profile
Bundaberg
Cairns
Gladstone
Mackay
Mixed Mode
Rockhampton

Attendance Requirements

All on-campus students are expected to attend scheduled classes - in some units, these classes are identified as a mandatory (pass/fail) component and attendance is compulsory. International students, on a student visa, must maintain a full time study load and meet both attendance and academic progress requirements in each study period (satisfactory attendance for International students is defined as maintaining at least an 80% attendance record).

Assessment Overview

Recommended Student Time Commitment

Each 12-credit Undergraduate unit at CQUniversity requires an overall time commitment of an average of 25 hours of study per week, making a total of 300 hours for the unit.

Assessment Tasks

Assessment Task Weighting
1. Presentation and Written Assessment 25%
2. Presentation and Written Assessment 20%
3. Practical and Written Assessment 20%
4. In-class Test(s) 35%

This is a graded unit: your overall grade will be calculated from the marks or grades for each assessment task, based on the relative weightings shown in the table above. You must obtain an overall mark for the unit of at least 50%, or an overall grade of ‘pass’ in order to pass the unit. If any ‘pass/fail’ tasks are shown in the table above they must also be completed successfully (‘pass’ grade). You must also meet any minimum mark requirements specified for a particular assessment task, as detailed in the ‘assessment task’ section (note that in some instances, the minimum mark for a task may be greater than 50%).

Consult the University's Grades and Results Policy for more details of interim results and final grades

Past Exams

To view Past Exams,
please login
Previous Feedback

Term 1 - 2024 : The overall satisfaction for students in the last offering of this course was 100.00% (`Agree` and `Strongly Agree` responses), based on a 16.67% response rate.

Feedback, Recommendations and Responses

Every unit is reviewed for enhancement each year. At the most recent review, the following staff and student feedback items were identified and recommendations were made.

Source: Unit evaluation
Feedback
Teaching method was very good. Exam component should be more elaborated.
Recommendation
Students will be encouraged to read the provided exam guidelines by discussing their importance in the lectures and tutorials.
Action Taken
A clear exam guideline was provided, which helped more students gain HD compared to earlier years.
Source: Unit evaluation
Feedback
Use software which are free and easy to access.
Recommendation
Design Builder software is used which has free access online for four weeks. Students will be encouraged to work early on so that they can finish the task in four weeks. The software is easy and can be learned quickly, within a week or two. How to access software will be demonstrated in the class.
Action Taken
The process of accessing the software was clearly discussed. Notice was given to students for early access so they could complete the project on time.
Source: Unit evaluation.
Feedback
Assessment requirements and its feedback should be clearly described.
Recommendation
More explanation of projects and the process of teamwork should be provided.
Action Taken
In Progress
Source: Unit evaluation.
Feedback
More interaction between students for team assessment is required.
Recommendation
The strategies for effective interaction should be provided.
Action Taken
In Progress
Source: Unit evaluation.
Feedback
Use more real world examples as contents are directly applicable to industry.
Recommendation
More practical examples should be provided.
Action Taken
In Progress
Unit learning Outcomes

On successful completion of this unit, you will be able to:

  1. Analyse, explain and evaluate performance characteristics and determine load on air conditioning and refrigeration plants
  2. Analyse, explain and evaluate mass, energy and heat transfer processes in industrial plant and components, and industrial processes
  3. Describe types and characteristics fluid machinery and apply and explain the theory of energy transfer to its operation in engineering applications
  4. Explain and analyse complex flows and computational fluid dynamics methods in such flows
  5. Apply discipline theories and methods to the problems of designing, implementing, operating and maintaining mechanical systems in industrial contexts
  6. Communicate professionally and provide evidence of personal reflection on, and critical assessment of, team contributions and professional development, and development of technical competence in thermofluid engineering
  7. Reflect upon, formulate and solve problems and record and communicate professionally the approach used to resolve problems and the reasons for adopting such approaches to problems.

The Learning Outcomes for this unit are linked with the Engineers Australia Stage 1 Competency Standards for Professional Engineers in the areas of 1. Knowledge and Skill Base, 2. Engineering Application Ability and 3. Professional and Personal Attributes at the following levels:

Introductory
1.6 Understanding of the scope, principles, norms, accountabilities and bounds of sustainable engineering practice in the specific discipline. (LO: 1N 2N 3N 4N 5N)
Intermediate
1.3 In-depth understanding of specialist bodies of knowledge within the engineering discipline. (LO: 1I 2I 3I 4I 5I)
1.5 Knowledge of engineering design practice and contextual factors impacting the engineering discipline. (LO: 1I 2I 3I 4I 5I)
3.1 Ethical conduct and professional accountability. (LO: 1I 2I 3N 4N 5N 6I 7I)
3.3 Creative, innovative and pro-active demeanour. (LO: 1I 2I 3N 4N 5N)
3.4 Professional use and management of information. (LO: 1I 2I 3I 4I 5I 6I 7I)
Advanced
1.1 Comprehensive, theory-based understanding of the underpinning natural and physical sciences and the engineering fundamentals applicable to the engineering discipline. (LO: 1A 2A 3I 4N 5I)
1.2 Conceptual understanding of the mathematics, numerical analysis, statistics, and computer and information sciences which underpin the engineering discipline. (LO: 1A 2A 3I 4I 5A)
1.4 Discernment of knowledge development and research directions within the engineering discipline. (LO: 1A 2I 3I 4I 5I)
2.1 Application of established engineering methods to complex engineering problem solving. (LO: 1A 2A 3I 4I 5I)
2.2 Fluent application of engineering techniques, tools and resources. (LO: 1A 2A 3I 4A 5N)
2.3 Application of systematic engineering synthesis and design processes. (LO: 1A 2A 3I 4A 5I)
2.4 Application of systematic approaches to the conduct and management of engineering projects. (LO: 1A 2A 3I 4A 5I)
3.2 Effective oral and written communication in professional and lay domains. (LO: 1A 2A 3A 4A 5A 6A 7A)
3.6 Effective team membership and team leadership. (LO: 6A 7A)

Note: LO refers to the Learning Outcome number(s) which link to the competency and the levels: N – Introductory, I – Intermediate and A - Advanced.
Refer to the Engineering Undergraduate Course Moodle site for further information on the Engineers Australia's Stage 1 Competency Standard for Professional Engineers and course level mapping information https://moodle.cqu.edu.au/course/view.php?id=1511

Alignment of Assessment Tasks to Learning Outcomes
Assessment Tasks Learning Outcomes
1 2 3 4 5 6 7
1 - Presentation and Written Assessment
2 - Presentation and Written Assessment
3 - Practical and Written Assessment
4 - In-class Test(s)
Alignment of Graduate Attributes to Learning Outcomes
Introductory Level
Intermediate Level
Graduate Level
Graduate Attributes Learning Outcomes
1 2 3 4 5 6 7
1 - Communication
2 - Problem Solving
3 - Critical Thinking
4 - Information Literacy
5 - Team Work
6 - Information Technology Competence
8 - Ethical practice
Alignment of Assessment Tasks to Graduate Attributes
Introductory Level
Intermediate Level
Graduate Level
Assessment Tasks Graduate Attributes
1 2 3 4 5 6 7 8 9 10