CQUniversity Unit Profile

In Progress

Please note that this Unit Profile is still in progress. The content below is subject to change.
ENTA13024 Thermofluid Engineering for Aviation
Thermofluid Engineering for Aviation
All details in this unit profile for ENTA13024 have been officially approved by CQUniversity and represent a learning partnership between the University and you (our student).
The information will not be changed unless absolutely necessary and any change will be clearly indicated by an approved correction included in the profile.
General Information

Overview

This unit introduces you to the concepts of thermodynamics and fluid mechanics in the context of the aviation and aerospace industries. You will begin with the ideal gas law and the first and second laws of thermodynamics for open and closed systems. You will then investigate the energy conversion and work done in engineering processes, and concepts and processes in thermodynamics to analyse energy and heat transfer in liquid and gas.You will study the physics of phase change processes for pure substances, conduct energy analysis of closed systems, and perform mass and energy analysis of control volumes. A key objective of the unit is improving your problem-solving skills by applying common theorems in fluid mechanics such as Bernoulli and energy equations to solve aerospace vehicle problems. You will study internal and external (drag and lift) fluid flows in the context of aviation systems and their impact on aerodynamics. You will use Computational Fluid Dynamics modelling software to solve complex aerodynamic problems.

Details

Career Level: Undergraduate
Unit Level: Level 3
Credit Points: 6
Student Contribution Band: 8
Fraction of Full-Time Student Load: 0.125

Pre-requisites or Co-requisites

Prerequisite:  Aerodynamics and Airframe Systems 

Important note: Students enrolled in a subsequent unit who failed their pre-requisite unit, should drop the subsequent unit before the census date or within 10 working days of Fail grade notification. Students who do not drop the unit in this timeframe cannot later drop the unit without academic and financial liability. See details in the Assessment Policy and Procedure (Higher Education Coursework).

Offerings For Term 1 - 2025

Online
Rockhampton

Attendance Requirements

All on-campus students are expected to attend scheduled classes - in some units, these classes are identified as a mandatory (pass/fail) component and attendance is compulsory. International students, on a student visa, must maintain a full time study load and meet both attendance and academic progress requirements in each study period (satisfactory attendance for International students is defined as maintaining at least an 80% attendance record).

Class and Assessment Overview

Recommended Student Time Commitment

Each 6-credit Undergraduate unit at CQUniversity requires an overall time commitment of an average of 12.5 hours of study per week, making a total of 150 hours for the unit.

Class Timetable

Bundaberg, Cairns, Emerald, Gladstone, Mackay, Rockhampton, Townsville
Adelaide, Brisbane, Melbourne, Perth, Sydney

Assessment Overview

Assessment Grading

This is a graded unit: your overall grade will be calculated from the marks or grades for each assessment task, based on the relative weightings shown in the table above. You must obtain an overall mark for the unit of at least 50%, or an overall grade of 'pass' in order to pass the unit. If any 'pass/fail' tasks are shown in the table above they must also be completed successfully ('pass' grade). You must also meet any minimum mark requirements specified for a particular assessment task, as detailed in the 'assessment task' section (note that in some instances, the minimum mark for a task may be greater than 50%). Consult the University's Grades and Results Policy for more details of interim results and final grades.

Previous Student Feedback
Unit Learning Outcomes
On successful completion of this unit, you will be able to:
  1. Apply energy equations and thermodynamics laws to solve energy conversion problems
  2. Analyse various phase change processes, heat transfer mechanisms, and thermodynamics and heat energy cycles for a variety of heat engines
  3. Apply fluid properties and fluid statics theory to calculate hydrostatic pressures and forces
  4. Analyse flow regimes using laminar and turbulent flow theories for different systems
  5. Analyse the behaviour and fluid dynamics using equations of conservation of mass, motion, and momentum for liquid and gas with the aid of appropriate computational tools
  6. Apply relevant terminology, diagrams and standard symbols in the documentation of solutions to analyses of processes
Alignment of Learning Outcomes, Assessment and Graduate Attributes
N/A Level
Introductory Level
Intermediate Level
Graduate Level
Professional Level
Advanced Level

Alignment of Assessment Tasks to Learning Outcomes

Assessment Tasks Learning Outcomes
1 2 3 4 5 6
1 - Written Assessment - 20%
2 - Written Assessment - 20%
3 - Project (applied) - 20%
4 - Online Test - 40%

Alignment of Graduate Attributes to Learning Outcomes

Graduate Attributes Learning Outcomes
1 2 3 4 5 6
1 - Communication
2 - Problem Solving
3 - Critical Thinking
4 - Information Literacy
5 - Team Work
6 - Information Technology Competence
7 - Cross Cultural Competence
8 - Ethical practice
9 - Social Innovation
10 - Aboriginal and Torres Strait Islander Cultures
Textbooks and Resources

Information for Textbooks and Resources has not been released yet.

This information will be available on Monday 17 February 2025
Academic Integrity Statement

Information for Academic Integrity Statement has not been released yet.

This unit profile has not yet been finalised.