In Progress
Please note that this Unit Profile is still in progress. The content below is subject to change.Overview
This unit will equip you with advanced knowledge and applications of the principles of thermodynamics, fluid mechanics and heat transfer to the design and analysis of complex thermofluid systems. You will apply your knowledge and understanding to evaluate the performance of air conditioning, cooling tower and other heat and energy transfer processes in various industrial plants. You will achieve the learning outcomes through an integration of advanced theoretical concepts and the application of modelling approaches and experimental methods to solve industrial thermofluid problems. You will work both individually and collaboratively to solve problems and document and communicate your work clearly in a professional manner.
Details
Pre-requisites or Co-requisites
There are no requisites for this unit.
Important note: Students enrolled in a subsequent unit who failed their pre-requisite unit, should drop the subsequent unit before the census date or within 10 working days of Fail grade notification. Students who do not drop the unit in this timeframe cannot later drop the unit without academic and financial liability. See details in the Assessment Policy and Procedure (Higher Education Coursework).
Offerings For Term 1 - 2025
Attendance Requirements
All on-campus students are expected to attend scheduled classes - in some units, these classes are identified as a mandatory (pass/fail) component and attendance is compulsory. International students, on a student visa, must maintain a full time study load and meet both attendance and academic progress requirements in each study period (satisfactory attendance for International students is defined as maintaining at least an 80% attendance record).
Recommended Student Time Commitment
Each 12-credit Postgraduate unit at CQUniversity requires an overall time commitment of an average of 25 hours of study per week, making a total of 300 hours for the unit.
Class Timetable
Assessment Overview
Assessment Grading
This is a graded unit: your overall grade will be calculated from the marks or grades for each assessment task, based on the relative weightings shown in the table above. You must obtain an overall mark for the unit of at least 50%, or an overall grade of 'pass' in order to pass the unit. If any 'pass/fail' tasks are shown in the table above they must also be completed successfully ('pass' grade). You must also meet any minimum mark requirements specified for a particular assessment task, as detailed in the 'assessment task' section (note that in some instances, the minimum mark for a task may be greater than 50%). Consult the University's Grades and Results Policy for more details of interim results and final grades.
All University policies are available on the CQUniversity Policy site.
You may wish to view these policies:
- Grades and Results Policy
- Assessment Policy and Procedure (Higher Education Coursework)
- Review of Grade Procedure
- Student Academic Integrity Policy and Procedure
- Monitoring Academic Progress (MAP) Policy and Procedure - Domestic Students
- Monitoring Academic Progress (MAP) Policy and Procedure - International Students
- Student Refund and Credit Balance Policy and Procedure
- Student Feedback - Compliments and Complaints Policy and Procedure
- Information and Communications Technology Acceptable Use Policy and Procedure
This list is not an exhaustive list of all University policies. The full list of University policies are available on the CQUniversity Policy site.
Feedback, Recommendations and Responses
Every unit is reviewed for enhancement each year. At the most recent review, the following staff and student feedback items were identified and recommendations were made.
Feedback from SUTE
Students are delighted with the current structure and delivery of the unit, as commented in the evaluation survey.
The same practice should be followed in future offerings.
- Apply the principles of thermodynamics, fluid mechanics, and heat transfer to design complex thermofluid processes related to air-conditioning, heating, cooling and ventilation systems
- Critically evaluate the performance of complex mass, heat and energy transfer systems
- Apply advanced discipline-specific theories to analyse the operating characteristics of pumps and turbines
- Model complex fluid dynamics problems using advanced numerical methods
- Work collaboratively in a team, communicate professionally and develop high-quality technical documentation related to theoretical, experimental and computational modalities in the discipline.
The Learning Outcomes for this unit are linked with the Engineers Australia Stage 1 Competency Standards for Professional Engineers in the areas of 1. Knowledge and Skill Base, 2. Engineering Application Ability and 3. Professional and Personal Attributes at the following levels:
Introductory Level
3.1 Ethical conduct and professional accountability.
3.2 Effective oral and written communication in professional and lay domains.
3.4 Professional use and management of information.
3.5 Orderly management of self, and professional conduct.
Intermediate Level
1.1 Comprehensive, theory-based understanding of the underpinning natural and physical sciences and the engineering fundamentals applicable to the engineering discipline.
1.5 Knowledge of engineering design practice and contextual factors impacting the engineering discipline.
1.6 Understanding of the scope, principles, norms, accountabilities and bounds of sustainable engineering practice in the specific discipline.
2.3 Application of systematic engineering synthesis and design processes.
3.3 Creative, innovative and pro-active demeanour.
Advanced Level
1.2 Conceptual understanding of the mathematics, numerical analysis, statistics, and computer and information sciences which underpin the engineering discipline.
1.3 In-depth understanding of specialist bodies of knowledge within the engineering discipline.
1.4 Discernment of knowledge development and research directions within the engineering discipline.
2.1 Application of established engineering methods to complex engineering problem solving.
2.2 Fluent application of engineering techniques, tools and resources.
2.4 Application of systematic approaches to the conduct and management of engineering projects.
3.6 Effective team membership and team leadership.
Refer to the Engineering Postgraduate Units Moodle site for further information on the Engineers Australia's Stage 1 Competency Standard for Professional Engineers and course level mapping information https://moodle.cqu.edu.au/course/view.php?id=11382
Alignment of Assessment Tasks to Learning Outcomes
Assessment Tasks | Learning Outcomes | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
1 - Written Assessment - 25% | |||||
2 - Written Assessment - 25% | |||||
3 - Laboratory/Practical - 20% | |||||
4 - In-class Test(s) - 30% |
Alignment of Graduate Attributes to Learning Outcomes
Graduate Attributes | Learning Outcomes | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
1 - Knowledge | |||||
2 - Communication | |||||
3 - Cognitive, technical and creative skills | |||||
4 - Research | |||||
5 - Self-management | |||||
6 - Ethical and Professional Responsibility | |||||
7 - Leadership | |||||
8 - Aboriginal and Torres Strait Islander Cultures |