In Progress
Please note that this Unit Profile is still in progress. The content below is subject to change.Overview
The objective of this unit is to introduce you to advanced electrical machines, drives and their control. You will learn about dynamic modelling of various types of DC and AC electrical machines. The unit will also introduce you to space vector theory associated with dynamic modelling of AC electrical machines. You will also learn about DC and AC motor drives. The unit will enable you to apply vector control fundamentals in electrical machine control. You will also learn some advanced topics such as speed-sensorless control of electrical machines. You will be required to successfully complete an electrical machines and drives design team project. Online students will be required to attend a compulsory residential school in order to complete the laboratory experiments. Prior knowledge of the fundamental concepts of electrical circuit analysis and electrical power engineering is assumed.
Details
Pre-requisites or Co-requisites
ENEE14007 Electrical Machines and Drives Applications is an Anti-Requisite for this unit.
Important note: Students enrolled in a subsequent unit who failed their pre-requisite unit, should drop the subsequent unit before the census date or within 10 working days of Fail grade notification. Students who do not drop the unit in this timeframe cannot later drop the unit without academic and financial liability. See details in the Assessment Policy and Procedure (Higher Education Coursework).
Offerings For Term 1 - 2026
Attendance Requirements
All on-campus students are expected to attend scheduled classes - in some units, these classes are identified as a mandatory (pass/fail) component and attendance is compulsory. International students, on a student visa, must maintain a full time study load and meet both attendance and academic progress requirements in each study period (satisfactory attendance for International students is defined as maintaining at least an 80% attendance record).
Recommended Student Time Commitment
Each 12-credit Postgraduate unit at CQUniversity requires an overall time commitment of an average of 25 hours of study per week, making a total of 300 hours for the unit.
Class Timetable
Assessment Overview
Assessment Grading
This is a graded unit: your overall grade will be calculated from the marks or grades for each assessment task, based on the relative weightings shown in the table above. You must obtain an overall mark for the unit of at least 50%, or an overall grade of 'pass' in order to pass the unit. If any 'pass/fail' tasks are shown in the table above they must also be completed successfully ('pass' grade). You must also meet any minimum mark requirements specified for a particular assessment task, as detailed in the 'assessment task' section (note that in some instances, the minimum mark for a task may be greater than 50%). Consult the University's Grades and Results Policy for more details of interim results and final grades.
All University policies are available on the CQUniversity Policy site.
You may wish to view these policies:
- Grades and Results Policy
- Assessment Policy and Procedure (Higher Education Coursework)
- Review of Grade Procedure
- Student Academic Integrity Policy and Procedure
- Monitoring Academic Progress (MAP) Policy and Procedure - Domestic Students
- Monitoring Academic Progress (MAP) Policy and Procedure - International Students
- Student Refund and Credit Balance Policy and Procedure
- Student Feedback - Compliments and Complaints Policy and Procedure
- Information and Communications Technology Acceptable Use Policy and Procedure
This list is not an exhaustive list of all University policies. The full list of University policies are available on the CQUniversity Policy site.
Feedback, Recommendations and Responses
Every unit is reviewed for enhancement each year. At the most recent review, the following staff and student feedback items were identified and recommendations were made.
Feedback from SUTE
Students appreciated the teaching style and support given by teaching staff.
Good practice should be continued.
Feedback from SUTE
Students requested improvement in video resources.
Improved video resources should be provided for better student understanding.
- Evaluate various types of DC and AC electrical machines using dynamic modelling principles
- Model and control AC electrical machines using space vector theory
- Apply vector control fundamentals in advanced electrical machine control
- Analyse and design DC and AC motor drives considering stakeholder requirements
- Document and communicate professional engineering information, including computer-based simulations and drawings using appropriate electrical engineering standards, terminology, and symbols
- Scope, plan, manage and successfully complete engineering projects autonomously and in teams with a responsible, ethical, and professional attitude regarding the role of engineers.
Alignment of Assessment Tasks to Learning Outcomes
| Assessment Tasks | Learning Outcomes | |||||
|---|---|---|---|---|---|---|
| 1 | 2 | 3 | 4 | 5 | 6 | |
| 1 - Online Quiz(zes) - 0% | ||||||
| 2 - Written Assessment - 10% | ||||||
| 3 - Practical Assessment - 15% | ||||||
| 4 - Portfolio - 30% | ||||||
| 5 - Online Test - 45% | ||||||
Alignment of Graduate Attributes to Learning Outcomes
| Graduate Attributes | Learning Outcomes | |||||
|---|---|---|---|---|---|---|
| 1 | 2 | 3 | 4 | 5 | 6 | |
| 1 - Knowledge | ||||||
| 2 - Communication | ||||||
| 3 - Cognitive, technical and creative skills | ||||||
| 4 - Research | ||||||
| 5 - Self-management | ||||||
| 6 - Ethical and Professional Responsibility | ||||||
| 7 - Leadership | ||||||
| 8 - Aboriginal and Torres Strait Islander Cultures | ||||||