In Progress
Please note that this Unit Profile is still in progress. The content below is subject to change.Overview
You will learn the principles of distributed systems, including architecture, design, and algorithms, and how to use them in the development of distributed applications. You will explore the significant distributed system characteristics of scalability, heterogeneity, security, and failure handling in addition to the fundamentals of networking, inter-process communication, remote invocation, and operating system support. You will examine different approaches to supporting distributed applications including client/server models, web services, cloud computing, and edge computing solutions. You will learn about distributed file systems, naming, and data-related aspects of distributed transactions, and data replication. You will analyse algorithms associated with coordination and agreement. You will also critique the social impacts arising from the widespread adoption of distributed systems, including remote work, virtual communities, and privacy and security concerns. You will reinforce the core theoretical concepts by analysing a case study focused on a complex, component-based distributed system designed with robust security features.
Details
Pre-requisites or Co-requisites
Prerequisite unit: COIT20256 Object Oriented Development Anti-Requisite unit: COIT23005 Distributed Systems
Important note: Students enrolled in a subsequent unit who failed their pre-requisite unit, should drop the subsequent unit before the census date or within 10 working days of Fail grade notification. Students who do not drop the unit in this timeframe cannot later drop the unit without academic and financial liability. See details in the Assessment Policy and Procedure (Higher Education Coursework).
Offerings For Term 1 - 2025
Attendance Requirements
All on-campus students are expected to attend scheduled classes - in some units, these classes are identified as a mandatory (pass/fail) component and attendance is compulsory. International students, on a student visa, must maintain a full time study load and meet both attendance and academic progress requirements in each study period (satisfactory attendance for International students is defined as maintaining at least an 80% attendance record).
Recommended Student Time Commitment
Each 6-credit Postgraduate unit at CQUniversity requires an overall time commitment of an average of 12.5 hours of study per week, making a total of 150 hours for the unit.
Class Timetable
Assessment Overview
Assessment Grading
This is a graded unit: your overall grade will be calculated from the marks or grades for each assessment task, based on the relative weightings shown in the table above. You must obtain an overall mark for the unit of at least 50%, or an overall grade of 'pass' in order to pass the unit. If any 'pass/fail' tasks are shown in the table above they must also be completed successfully ('pass' grade). You must also meet any minimum mark requirements specified for a particular assessment task, as detailed in the 'assessment task' section (note that in some instances, the minimum mark for a task may be greater than 50%). Consult the University's Grades and Results Policy for more details of interim results and final grades.
All University policies are available on the CQUniversity Policy site.
You may wish to view these policies:
- Grades and Results Policy
- Assessment Policy and Procedure (Higher Education Coursework)
- Review of Grade Procedure
- Student Academic Integrity Policy and Procedure
- Monitoring Academic Progress (MAP) Policy and Procedure - Domestic Students
- Monitoring Academic Progress (MAP) Policy and Procedure - International Students
- Student Refund and Credit Balance Policy and Procedure
- Student Feedback - Compliments and Complaints Policy and Procedure
- Information and Communications Technology Acceptable Use Policy and Procedure
This list is not an exhaustive list of all University policies. The full list of University policies are available on the CQUniversity Policy site.
Feedback, Recommendations and Responses
Every unit is reviewed for enhancement each year. At the most recent review, the following staff and student feedback items were identified and recommendations were made.
Feedback from Unit Coordinator self reflection
There is a need to gather feedback from students and the teaching team on the newly added content regarding 1) security topics (mutual authentication and symmetrical/asymmetrical cryptography) and 2) the complex distributed system case study, to assess their reception and integration into the course and inform necessary refinements for improved learning outcomes.
Collect feedback from the teaching team and check students' performance on the newly added content on the two topics. If necessary, make proper adjustments/updates to the content.
Feedback from Unit Coordinator self reflection
The rise of IoT, demand for low-latency applications, and growth of 5G underscore the importance of incorporating edge computing into the curriculum to equip students with knowledge of efficient and scalable computing solutions.
Introduce the modern distributed computing model of Edge Computing, along with key industry standards. Assess Edge Computing through a simplified case study, such as Smart Farming.
- Develop distributed applications using networking, inter-process communication, and remote invocation
- Design and develop distributed applications using one of the approaches to client/server models, web services, cloud computing, and edge computing solutions
- Solve problems in the distributed systems domain by applying the principles of distributed systems to authentic problems
- Critique the social impacts arising from the widespread adoption of distributed systems, including remote work, virtual communities, and privacy and security concerns
- Work collaboratively and communicate effectively as part of a productive team.
The Australian Computer Society (ACS) recognises the Skills Framework for the Information Age (SFIA). SFIA is adopted by organisations, governments and individuals in many countries and provides a widely used and consistent definition of ICT skills. SFIA is increasingly being used when developing job descriptions and role profiles. ACS members can use the tool MySFIA to build a skills profile at https://www.acs.org.au/professionalrecognition/mysfia-b2c.html
This unit contributes to the following workplace skills as defined by SFIA 9 (the SFIA code is included):
- Systems design (DESN)
- Systems integration and build (SINT)
- Programming/software development (PROG)
- Database design (DBDS)
- Functional testing (TEST)
- Non-functional testing (NFTS)
- Security operations (SCAD)
- Deployment (DEPL)
- Software configuration (PORT)
Alignment of Assessment Tasks to Learning Outcomes
Assessment Tasks | Learning Outcomes | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
1 - Practical Assessment - 30% | |||||
2 - Practical Assessment - 40% | |||||
3 - Written Assessment - 30% |
Alignment of Graduate Attributes to Learning Outcomes
Graduate Attributes | Learning Outcomes | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
1 - Knowledge | |||||
2 - Communication | |||||
3 - Cognitive, technical and creative skills | |||||
4 - Research | |||||
5 - Self-management | |||||
6 - Ethical and Professional Responsibility | |||||
7 - Leadership | |||||
8 - Aboriginal and Torres Strait Islander Cultures |