CQUniversity Unit Profile

In Progress

Please note that this Unit Profile is still in progress. The content below is subject to change.
COIT20257 Distributed Systems: Principles and Development
Distributed Systems: Principles and Development
All details in this unit profile for COIT20257 have been officially approved by CQUniversity and represent a learning partnership between the University and you (our student).
The information will not be changed unless absolutely necessary and any change will be clearly indicated by an approved correction included in the profile.
General Information

Overview

You will learn the principles of distributed systems, including architecture, design, and algorithms, and how to use them in the development of distributed applications. You will explore the significant distributed system characteristics of scalability, heterogeneity, security, and failure handling in addition to the fundamentals of networking, inter-process communication, remote invocation, and operating system support. You will examine different approaches to supporting distributed applications including client/server models, web services, cloud computing, and edge computing solutions. You will learn about distributed file systems, naming, and data-related aspects of distributed transactions, and data replication. You will analyse algorithms associated with coordination and agreement. You will also critique the social impacts arising from the widespread adoption of distributed systems, including remote work, virtual communities, and privacy and security concerns. You will reinforce the core theoretical concepts by analysing a case study focused on a complex, component-based distributed system designed with robust security features.

Details

Career Level: Postgraduate
Unit Level: Level 9
Credit Points: 6
Student Contribution Band: 8
Fraction of Full-Time Student Load: 0.125

Pre-requisites or Co-requisites

Prerequisite unit: COIT20256 Object Oriented Development Anti-Requisite unit: COIT23005 Distributed Systems  

Important note: Students enrolled in a subsequent unit who failed their pre-requisite unit, should drop the subsequent unit before the census date or within 10 working days of Fail grade notification. Students who do not drop the unit in this timeframe cannot later drop the unit without academic and financial liability. See details in the Assessment Policy and Procedure (Higher Education Coursework).

Offerings For Term 1 - 2025

Brisbane
Melbourne
Online
Sydney

Attendance Requirements

All on-campus students are expected to attend scheduled classes - in some units, these classes are identified as a mandatory (pass/fail) component and attendance is compulsory. International students, on a student visa, must maintain a full time study load and meet both attendance and academic progress requirements in each study period (satisfactory attendance for International students is defined as maintaining at least an 80% attendance record).

Class and Assessment Overview

Recommended Student Time Commitment

Each 6-credit Postgraduate unit at CQUniversity requires an overall time commitment of an average of 12.5 hours of study per week, making a total of 150 hours for the unit.

Class Timetable

Bundaberg, Cairns, Emerald, Gladstone, Mackay, Rockhampton, Townsville
Adelaide, Brisbane, Melbourne, Perth, Sydney

Assessment Overview

1. Practical Assessment
Weighting: 30%
2. Practical Assessment
Weighting: 40%
3. Written Assessment
Weighting: 30%

Assessment Grading

This is a graded unit: your overall grade will be calculated from the marks or grades for each assessment task, based on the relative weightings shown in the table above. You must obtain an overall mark for the unit of at least 50%, or an overall grade of 'pass' in order to pass the unit. If any 'pass/fail' tasks are shown in the table above they must also be completed successfully ('pass' grade). You must also meet any minimum mark requirements specified for a particular assessment task, as detailed in the 'assessment task' section (note that in some instances, the minimum mark for a task may be greater than 50%). Consult the University's Grades and Results Policy for more details of interim results and final grades.

Previous Student Feedback

Feedback, Recommendations and Responses

Every unit is reviewed for enhancement each year. At the most recent review, the following staff and student feedback items were identified and recommendations were made.

Feedback from Unit Coordinator self reflection

Feedback

There is a need to gather feedback from students and the teaching team on the newly added content regarding 1) security topics (mutual authentication and symmetrical/asymmetrical cryptography) and 2) the complex distributed system case study, to assess their reception and integration into the course and inform necessary refinements for improved learning outcomes.

Recommendation

Collect feedback from the teaching team and check students' performance on the newly added content on the two topics. If necessary, make proper adjustments/updates to the content.

Feedback from Unit Coordinator self reflection

Feedback

The rise of IoT, demand for low-latency applications, and growth of 5G underscore the importance of incorporating edge computing into the curriculum to equip students with knowledge of efficient and scalable computing solutions.

Recommendation

Introduce the modern distributed computing model of Edge Computing, along with key industry standards. Assess Edge Computing through a simplified case study, such as Smart Farming.

Unit Learning Outcomes
On successful completion of this unit, you will be able to:
  1. Develop distributed applications using networking, inter-process communication, and remote invocation
  2. Design and develop distributed applications using one of the approaches to client/server models, web services, cloud computing, and edge computing solutions
  3. Solve problems in the distributed systems domain by applying the principles of distributed systems to authentic problems
  4. Critique the social impacts arising from the widespread adoption of distributed systems, including remote work, virtual communities, and privacy and security concerns
  5. Work collaboratively and communicate effectively as part of a productive team.

The Australian Computer Society (ACS) recognises the Skills Framework for the Information Age (SFIA). SFIA is adopted by organisations, governments and individuals in many countries and provides a widely used and consistent definition of ICT skills. SFIA is increasingly being used when developing job descriptions and role profiles. ACS members can use the tool MySFIA to build a skills profile at https://www.acs.org.au/professionalrecognition/mysfia-b2c.html

This unit contributes to the following workplace skills as defined by SFIA 9 (the SFIA code is included):

  • Systems design (DESN)
  • Systems integration and build (SINT)
  • Programming/software development (PROG)
  • Database design (DBDS)
  • Functional testing (TEST)
  • Non-functional testing (NFTS)
  • Security operations (SCAD)
  • Deployment (DEPL)
  • Software configuration (PORT)

Alignment of Learning Outcomes, Assessment and Graduate Attributes
N/A Level
Introductory Level
Intermediate Level
Graduate Level
Professional Level
Advanced Level

Alignment of Assessment Tasks to Learning Outcomes

Assessment Tasks Learning Outcomes
1 2 3 4 5
1 - Practical Assessment - 30%
2 - Practical Assessment - 40%
3 - Written Assessment - 30%

Alignment of Graduate Attributes to Learning Outcomes

Graduate Attributes Learning Outcomes
1 2 3 4 5
1 - Knowledge
2 - Communication
3 - Cognitive, technical and creative skills
4 - Research
5 - Self-management
6 - Ethical and Professional Responsibility
7 - Leadership
8 - Aboriginal and Torres Strait Islander Cultures
Textbooks and Resources

Information for Textbooks and Resources has not been released yet.

This information will be available on Monday 17 February 2025
Academic Integrity Statement

Information for Academic Integrity Statement has not been released yet.

This unit profile has not yet been finalised.